
Main sponsor

Picasso	 Matejko	 +	 Canale1o	 Malczewski	 +	 Chelmonski	

HTML5 WebSockets - the Web Communication
revolution, making the impossible, possible

Brad Drysdale

State of Scala
Venkat Subramaniam

Don't code - create
software!

Paweł Lipiński

Java Boilerplate
Busters

Hamlet D'Arcy

2!

Kaazing. Connect. Everything.

HTML5 WebSockets
The Web Communication Revolution

Brad Drysdale
Director of Technology - Kaazing

3!

Birth of a new idea…

What do WebSocket and model trains have in
common?

4!

Client-Server Architecture

5!

HTTP Is Not Full Duplex

6!

Half-Duplex Architecture

7!

The Legacy Web Stack

•  Designed to serve static documents
•  HTTP
•  Half duplex communication

•  High latency
•  Bandwidth intensive

•  HTTP header traffic approx. 800 to 2000
bytes overhead per request/response

•  Complex architecture
•  Not changed since the 90’s
•  Plug-ins
•  Polling / long polling
•  Legacy application servers

•  Expensive to “Webscale” applications
Half duplex Full duplex

8!

Hack the Web for Real-Time

•  Ajax applications use various “hacks” to
simulate real-time communication
•  Polling - HTTP requests at regular intervals

and immediately receives a response
•  Long Polling - HTTP request is kept open by

the server for a set period
•  Streaming - More efficient, but not complex to

implement and unreliable
•  Excessive HTTP header traffic, significant

overhead to each request response

9!

Hack the Web for Real-Time

Polling Long-Polling

Streaming Request Response
Overhead

Google Instant search single
key press = 649 Bytes

Yahoo single character
search = 1432 Bytes

10!

GET /PollingStock//PollingStock HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:
1.9.1.5) Gecko/20091102 Firefox/3.5.5
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/
*;q=0.8
Accept-Language: en-us
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://localhost:8080/PollingStock/
Cookie: showInheritedConstant=false;
showInheritedProtectedConstant=false; showInheritedProperty=false;
showInheritedProtectedProperty=false; showInheritedMethod=false;
showInheritedProtectedMethod=false; showInheritedEvent=false;
showInheritedStyle=false; showInheritedEffect=false;

HTTP Request Headers

Client

11!

HTTP Response Headers

•  Total (unnecessary) HTTP request and
response header information overhead:
871 bytes (example)

•  Overhead can be as much as 2000 bytes

HTTP/1.x 200 OK
X-Powered-By: Servlet/2.5
Server: Sun Java System Application Server 9.1_02
Content-Type: text/html;charset=UTF-8
Content-Length: 321
Date: Sat, 07 Nov 2009 00:32:46 GMT

Server

12!

HTTP Header Traffic Analysis

•  Example network throughput for HTTP request
and response headers associated with polling
•  Use case A: 1,000 clients polling every second:

•  Network throughput is (871 x 1,000) = 871,000 bytes =
6,968,000 bits per second (~6.6 Mbps)

•  Use case B: 10,000 clients polling every second:
•  Network throughput is (871 x 10,000) = 8,710,000 bytes =

69,680,000 bits per second (~66 Mbps)

•  Use case C: 100,000 clients polling every second:
•  Network throughput is (871 x 100,000) = 87,100,000 bytes =

696,800,000 bits per second (~665 Mbps)

13!

About Ajax and Comet

•  Great toilet cleaners…
•  Ajax (Asynchronous JavaScript and XML)

is used to build highly interactive Web
apps
•  Content can change without loading the entire

page
•  User-perceived low latency

•  "Real-time" often achieved through
polling and long-polling

•  Comet lack of a standard implementation
•  Comet adds lots of complexity

14!

Comet Problems

15!

•  Desktop Networking
•  Full-duplex bidirectional TCP sockets
•  Access any server on the network

•  Browser Networking
•  Half-duplex HTTP request-response
•  HTTP polling, long polling fraught with

problems
•  Lots of latency, lots of bandwidth, lots of

server-side resources
•  Bespoke solutions became very complex over

time

Desktop vs. Browser

16!

Complexity does not scale

17!

The Web gets a new Superhero

18!

Enter HTML5 WebSocket!

19!

HTML5 WebSocket

•  HTML5 is the next set of W3C HTML standards
backed by Google, Apple, Mozilla, Opera,
Microsoft, Cisco, etc

•  Consists of W3C API and IETF Protocol
•  WebSockets provides a full-duplex, single

socket over the Web
•  Traverses firewalls, proxies, and routers

seamlessly
•  Leverages Cross-Origin Resource Sharing

(CORS)
•  Share port with existing HTTP content

20!

HTML5 WebSocket Schemes

•  WebSocket
ws://www.websocket.org/text

•  WebSocket Secure
wss://www.websocket.org/encrypted-text

21!

//Checking for browser support
if (window.WebSocket) {
 document.getElementById("support").innerHTML =
 "HTML5 WebSocket is supported";
 } else {
 document.getElementById("support").innerHTML =
 "HTML5 WebSocket is not supported";
 }

JavaScript

Checking For Browser Support

22!

//Create new WebSocket
var mySocket = new WebSocket("ws://
www.WebSocket.org");

// Associate listeners
mySocket.onopen = function(evt) {

 alert("Connection open…");
};

mySocket.onmessage = function(evt) {

 alert("Received message: " + evt.data);
};

mySocket.onclose = function(evt) {

 alert("Connection closed…");
};

JavaScript

Using the WebSocket API

23!

// Sending data
mySocket.send("WebSocket Rocks!");

// Close WebSocket
mySocket.close();

JavaScript

Using the WebSocket API

24!

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 5

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Source: http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol

WebSocket Handshake

25!

WebSocket Traffic

•  Connection established by upgrading from HTTP protocol
to WebSocket protocol using the same TCP connection

•  Once upgraded, WebSocket data frames can be sent back
and forth between client and server in full-duplex mode

•  Frames can be sent full-duplex, in both directions at the
same time

•  Each frame of data:
o  Starts with a 0x00 byte and ends with a 0xFF byte
o  Contains UTF-8 data in between:

\x00Hello, WebSocket\0xff

There is no defined maximum size, but JavaScript does not allow
>4GB of data)

26!

WebSocket Revolution

•  Dramatic reduction in unnecessary
network traffic and latency
•  WebSocket requires only single byte framing

•  500:1 or even 1000:1 bandwidth reduction

•  WebSocket does not necessitate new TCP
connections for each or group of messages

•  Faster response, even more so with TLS/SSL

•  Vastly simplified, more straight through
architecture

27!

Polling Introduces Extra Latency!

28!

HTTP versus WebSockets

WebSockets reduces bandwidth overhead up to 1000x

 HTTP traffic* WebSocket Traffic*

Google 788 bytes, plus 1 byte 1 byte, plus 1 byte

Yahoo 1737 bytes, plus 1 byte 1 byte, plus 1 byte

* Header information for each character entered into search bar

Example: Entering a character in a search field with auto suggestion

29!

Polling vs. Web Sockets

30!

Overheard…

 “Reducing kilobytes of data to 2 bytes…and
reducing latency from 150ms to 50ms is far
more than marginal. In fact, these two factors
alone are enough to make WebSocket
seriously interesting to Google.”
—Ian Hickson (Google, HTML5 spec lead)

31!

The New Web Stack

•  Designed for full-duplex high
performance transactional Web
•  HTTP & HTML5 WebSocket
•  Full duplex communication

•  Lower latency
•  Reduced bandwidth
•  Simplified architecture
•  Massive scalability

Half duplex Full duplex

32!

WebSockets Architecture

33!

Browser and Server Support

•  Browsers:
•  Chrome
•  Safari
•  Firefox 4
•  Coming in Opera and “on the list” for IE

•  Servers:
•  Kaazing WebSocket Gateway
•  Apache mod_pywebsocket
•  phpwebsockets
•  web-socket-ruby
•  More…

34!

WebSocket Emulation

•  Kaazing WebSocket Gateway
•  http://www.kaazing.com/download
•  Makes WebSocket work in all browsers today

(including I.E. 6)

•  Flash WebSocket implementation
•  http://github.com/gimite/web-socket-js
•  Requires opening port on the server's firewall

Copyright © 2011 - Kaazing Corporation. All rights reserved.

35!

Discovering WebSockets

36!

Got WebSocket. Now What?

•  Major upgrade for web traffic, use it!
•  Simple text
•  JSON
•  Existing protocols (why reinvent the wheel?)

•  Text Protocols: XMPP, STOMP
•  Binary Protocols: AMQP, IRC, Pub/Sub

•  Build high performance, scalable messaging for
web apps

•  Extend the reach of *any* TCP-based protocol
you want, all the web to the browser

•  The browser is a true client of that protocol –
powerful paradigm shift

37!

Example: Financial Apps

38!

Example: Financial Apps

39!

WebSocket-Based Quake II

http://code.google.com/p/quake2-gwt-port

40!

Example: Earth Control Game

http://apps.facebook.com/earthcontrol

41!

Example: Sketchpad

http://mrdoob.com/projects/multiuserpad/

42!

WebSocket in Action

43!

Possibilities…

•  Low latency Financial and Trading apps
•  Online in-game betting and live auctions
•  Social networking
•  Performance and monitoring dashboards
•  RFID and GPS Tracking
•  Sports and news broadcasting applications
•  Supply chain and inventory management
•  Smart meters
•  Next generation web application of your

choice!

44!

Your cool [HTML5 WebSocket] App
Here...

http://iseeaday.blogspot.com/

45!

Mobile Aggregation

Reduce dependencies on portal
servers and portal farms.

46!

Unconstrained Web
•  Financial Services
•  Transportation and Logistics
•  Telecommunications
•  Utilities
•  Social Networking

46

3G & 4G Mobile Networking
•  Significant bandwidth reduction
•  New Service Delivery
•  New Customer Experience

Cloud Computing
•  Server to Server communication
•  Distributed Internet applications

over any TCP protocol
•  Services on demand

47!

Main sponsor

Picasso	 Matejko	 +	 Canale1o	 Malczewski	 +	 Chelmonski	

Arquillian: Real Java enterprise
testing
Dan Allen

Fractal TDD: Using
tests to drive system

design
Steve Freeman

Pro Groovy
Dierk König

“Same Data, Any API”,
making sure your
application scales

Guy Korland

49!

