
 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

Functional
Thinking

3 metaphors^
tortured

x = x + 1
solve for x?

:
assign to x

languages are
tools.

Learning a new
one takes time.

Paradigms

“functional” is
more a way of
thinking than

a tool set

“functional” is
more a way of
thinking than

a tool set

Execution in
the Kingdom
of Nouns

Steve
Yegge
http://steve-yegge.blogspot.com/
2006/03/execution-in-kingdom-of-nouns.html

v e r b s !

"OOP makes
working with
state easier.

FP makes
eliminating state

easier"
OH on

OO makes code
understandable by

encapsulating moving
parts.

FP makes code
understandable by
minimizing moving

parts.
Michael Feathers, author of “Working with Legacy Code”

number
classification

perfect #

(sum of the factors of a #) - # = #

(sum of the factors of a #) = 2#

6: 1 + 2 + 3 + 6 = 12 (2x6)
28: 1 + 2 + 4 + 7 + 14 + 28 = 56 (2x28)
496: . . .

∑(f(#)) - # = #

classification

∑(f(#)) = 2# perfect

∑(f(#)) > 2# abundant

∑(f(#)) < 2# deficient

imperative

2

8

internal state

cohesive

composed

testable

refactorable

(slightly more)
functional

no internal
 state

less need for scoping testablerefactorable

“functional” is
more a way of
thinking than

a tool set

“functional” is
more a way of
thinking than

a tool set

concepts

1st class
functions

high-order
functions

pure
functions

recursion

strict evaluation

1st class
functions

pure
functions

high-order
functionsrecursion

strict evaluation

high-order
functions

high-order
functions

functions that can
either take other

functions as
arguments or return

them as results

!

closures
What’s so special about...

let the
language

manage state

let the
language

manage state

concurrency

memory allocation

garbage collection

tests

state

languages handle

time

specification-based testing frameworks

1st-class
functions

1st-class
functions
functions can

appear anywhere
other language
constructs can

appear

think about results,
not steps

think about results,
not steps

1 2 3 4 5 6 7 8 9 10 11 12

12
1 2 3 4 6 12

think about results,
not steps

think about results,
not steps

list comprehension

(number + 1)range from 1 to for each n in

filter list by criteria my is-factor? function
return the numbers that match

return the list as a set

composition

academia
alert!

currying
given:

then:

currying takes a function with a particular
number of parameters and returns a

function with some of the parameter values
fixed, creating a new function

return a version that always multiplies by 4

==

new, different
tools

function reuse

new, different
tools

currying

 pure
functions

 pure
functions

no memory or
i/o side effects

enables memoization

if the result isn’t used, it can be removed

a particular invocation with a set of
parameters returns a constant value

parallel execution

execution order can change

purity

recursion

iterative filtering

recursive filtering

think about results,
not steps

think about results,
not steps

http://www.scala-lang.org/node/135

think about results,
not steps

think about results,
not steps

what about things you want to control?

performance?

new, different
tools

new, different
tools

imperative number
classifier

optimized!

optimized factors

think about results,
not steps

think about results,
not steps

ingrained imperativity

Google challenged college grads to write
code for 100 CPU computers...

...they failed

sound familiar?

learn MapReduce

post-imperative

http://broadcast.oreilly.com/2008/11/warning-x-x-1-may-be-hazardous.html

http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html

state

garbage collection

concurrency

. . .

tests

languages handle

time

iteration

strict
evaluation

academia
alert!

all elements
pre-evaluated

elements evaluated
as needed

strict
evaluation

non-strict
evaluation

divByZero

=4

laziness

([1001 7927] [1002 7933] [1003 7937] [1004 7949] [1005 7951])

new, different
tools

new, different
tools

concurrency

no effect on the world

depend only on their arguments

given the same arguments, return the
same values

no notion of time

functions:

wait for external events

expect change over time

affect the world

produce different answers at different
times

most programs
are processes

what can we add
to functional

programming to
deal with
processes?

non-composable

assume 1 thread of control, 1 timeline

not atomic

with concurrency: lock & pray

subtle visibility rules

variables

life w/ variables

variable

???

variable

???

?

 identity

identity value

identity value

value

explicit semantic

state

identity, state,
& time

term meaning

value immutable data in a
persistent data structure

identity series of causally related
values over time

state identity at a point in time

time
relative: before/
simultaneous/after ordering
of causal values

 epochal
time model

v1

F

v2

F

v3

F

v4

Process events
(pure functions)

Observers/perception/memory

States
(immutable values)Identity

(succession of
states)

actors

new, different
tools

new, different
tools

thinking
functionally

immutability
over

state transitions

http://www.ibm.com/developerworks/java/library/j-jtp02183/index.html

results
over
steps

composition
over

structure

declarative
over

imperative

paradigm
over
tool

summary

immediately beneficial beginning steps

new ways of thinking about design

new tools for extension, reuse, etc.

enables entirely new capabilities

following the general trend in language
design

functional thinking

This work is licensed under the Creative Commons
Attribution-Share Alike 3.0 License.

http://creativecommons.org/licenses/by-sa/3.0/us/

?’s
please fill out the session evaluations

 NEAL FORD software architect / meme wrangler

 ThoughtWorks®

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319
 www.nealford.com
 www.thoughtworks.com
 blog: memeagora.blogspot.com
 twitter: neal4d

