
ThoughtWorksThoughtWorks

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

the productive programmer

where did this topic
come from?

?

where did this topic
come from?

where did this topic
come from?

automation
killing distractions

canonicality
applying the dry principle

getting your computer to work harder

focus
doing stuff faster

acceleration

part 1: mechanics

acceleration

typing is faster than navigation

firefox

windows explorer address bar (alt-d)

finder (apple-shift-g)

number-fox plugin

/ searching

o/s accelerators

leopard smart help X

iClip ($$)

why do operating systems have only 1
clipboard with 1 entry????

clcl

jump cut

clipboards

X

mac os x : jumpcut
demo

context switching eats time

pushd pushes a directory on the stack

popd pops it back off

there and back

C:\temp>pushd \MyDocuments\Documents\dev\haskell

C:\MyDocuments\Documents\dev\haskell>dir
02/13/2006 12:12 AM <DIR> .
02/13/2006 12:12 AM <DIR> ..
02/13/2006 12:12 AM <DIR> nfjs_functionallangs_haskell
 0 File(s) 0 bytes
 3 Dir(s) 11,743,178,752 bytes free

C:\MyDocuments\Documents\dev\haskell>popd

pushd/popd

command prompt here power toy

graphical explorers better for some things....

...command line better for others

bash here (cygwin)

command prompts

cmd prompt explorer bar

path finder X

how many of you have
written an application for
heads-down data entry

personnel?

when coding, always prefer
keyboard to mouse

pair programmer

make yourself use the shortcut even if you’ve
gotten there another way

have someone/something pester you about it

mousefeed for eclipse

key promoter plug-in for intellij

learning shortcuts

repeat them to yourself

flash cards

learning shortcuts

create a “cheat sheet”

all our
hierarchies
are too deep:
	

 	

	

 	

 file system
	

 	

 packages

goto class

goto class: pattern of
capital letters

goto symbol

introduce variable

introduce variable redux

escalating
selection

some choice shortcuts

intelliJ eclipse

goto class ctrl-n ctrl-shift-t

introduce variable ctrl-alt-v alt-shift-l
escalating selection ctrl-w alt-shift-up
recently edited files ctrl-e n/a (ctrl-e)
symbol list alt-ctrl-shift-n ctrl-o
incremental search alt-f3 ctrl-j

learn the language of your template engine

all major ide’s and coding text editors

parameter substitution, default values, repeating
values

bash for textmate/e editor

velocity in intellij

live templates

i
n
t
e
l
l
i
j

t
e
m
p
l
a
t
e
s

every time you type
something for the 3rd time,

templatize it

textexpander

live templates at the o/s level

auto-hot key

typinator

key macro tools

X

textexpander

don’t type the same
commands over and over

focus

...sitting immediately in front of you

get a comfortable chair!

dual monitors...

good keyboard

administrator privilege for the o/s

simple stuff

how many people here work in cube land?

modern office environments are terrible for
knowledge workers

too much out of context noise

insidious distractions

war rooms

in flow, michael csikszentmihalyi describes flow
state

in the humane interface, jef raskin describes locus
of attention

anything that happens outside your locus of
attention breaks flow

time disappears

total concentration

locus of attention

killing balloon tips

automatically makes your background dark
after a set time

jedi concentrate

doodim

screen dimmers

X

internet blockers

http://getconcentrating.com/
X

http://www.gyrolabs.com/2006/09/25/jediconcentrate-mod/

the higher the level of
concentration, the denser

the ideas

turn off instant messaging

turn off notifications

don’t keep email open

create office “quiet time”

put on headphones

the easy stuff

this is not the solution!
Puma Productivity

Pants™

focus techniques

package/namespace

all developer hierarchies are too deep

file system

what worked well with 20 mb hard drives fails
with 200 gb

documentation

search > navigation

google desktop search

built into modern operating systems

retro-fittable in older ones

larry’s “any text file” indexer

desktop search

replace file hierarchy
navigation with search

rooted view == project explorer

specialized explorer view

especially good for directory-based version
control

C:\WINDOWS\explorer.exe /e,/root,c:\work\project

create a shortcut:

rooted views

virtual desktop manager power toy

spaces (in leopard)

use virtual desktops

X

http://virtuawin.sourceforge.net/

canonicality

DRY says that every piece of system knowledge should have
one authoritative, unambiguous representation. Every piece of
knowledge in the development of something should have a

single representation. A system's knowledge is far broader than
just its code. It refers to database schemas, test plans, the build

system, even documentation.
the pragmatic programmer - andy hunt, dave thomas

decide on the canonical representation

object-relational mapping is one of the most
common dry violations

database schema + xml configuration + pojo > 1

generate the others

dry o/r

the scenario

DDL

<xml>

 <entity>

 ...

 </entity>

</xml>

class Person {

 int id;

 double salary;

 . . .

}

where’s the information?

canonical
representation

DDL

<xml>

 <entity>

 ...

 </entity>

</xml>

class Person {

 int id;

 double salary;

 . . .

}

the target

build event sql map

generated sql map

step 2: class builder

canonical
representation

DDL

<xml>

 <entity>

 ...

 </entity>

</xml>

class Person {

 int id;

 double salary;

 . . .

}

dry documentation

dry diagrams

open source schema diagrammer

the requirement: entity-relationship diagrams
for each iteration

schemaspy

generates acceptable html

written in java

dry schemas

dry schemas

automation

version control (!)

one-command build

continuous integration

documentation

obvious automatables

subverting other tools

allows you to automate debugging “wizard”-
style web applications

open source tool for user acceptance testing of
web applications

includes a side-project called selenium ide

...but it never is!

you always think “this is the last time”...

selenium

selenium defines an interaction api for web
applications

record your interaction the 1st time you walk
through the page

literally cuts hours off debugging time

have your q/a department record bug
discoveries

automated interaction

don’t spend time doing by
hand what you can automate

build your own tools

build shims & jigs

you almost never do anything just once

work like a craftsman, not a laborer

...but you build assets

building a tool takes a little longer than brute
force...

adding new files to subversion repository

tortoise (on windows), but with limits

bash-fu

svnAddNew
svn st | grep '^\?' | tr '^\?' ' ' |
sed 's/ []*//' | sed 's/[]/\\ /g' | xargs svn add

svn st get svn status (new files start with “?”)

grep '^\?' find all new files

tr '^\?' ' ' translate the “?” into a space

sed 's/[]*//' substitute spaces to nothing

sed 's/[]/\\ /g' escape embedded spaces

xargs svn add pipe the improved arguments into svn

by hand?!?

the problem: 2 gb of log files / week

need to know the count of each exception type

automate with a bash script

more bash-fu

get counts of each
exception

get all exception types from log file sort them

get unique
list

automating com

use a real language for scripting

examples in lots of different languages/tools

which one do I use for this problem?

scripting rationale

“we can do it by hand in 10 minutes...”

the problem: split a 38,000 line sql file into
1000 line chunks

each chunk must be syntactically correct

after 50 minutes:

automate instead

sql splitter

it “accidentally” became an important part of
our project

it took us 5 times longer to automate it

we’ve had to do it numerous times since

...so that we could write unit tests

using a real language allowed us to refactor it...

time spent automating

if you start by treating it as a 1st class problem,
you’ll build better solutions

allow throw-aways to grow into assets

allows unit testing, refactoring, ide support

using real languages

squanders focus

solving problems by hand makes you dumber

steals concentration

figure out clever ways to solve problems

automating makes you smarter

time savings

justifying automation

decide if you want to go forward

set a reasonable time to see if it’s possible

evaluate at the end of the box

or abandon the effort

or create another time box

timebox

automation is about

how long does it take now X # of times we
must do it?

what are the consequences of doing it wrong 1
time?

risk mitigation

time savings

analyze the r.o.i.

don’t shave yaks!

end of part 1:
mechanics

next: practice

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

ThoughtWorks

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

10 ways to improve
your code

composed method

1

Keep all of the operations in a method at the
same level of abstraction.

Divide your program into methods that
perform one identifiable task.

This will naturally result in programs with many
small methods, each a few lines long.

composed method

refactoring to
composed method

populate()

getDatabaseConnection()

createResultSet()

addPartToListFromResultSet()

PartDb

populate()

getDatabaseConnection()

createResultSet()

addPartToListFromResultSet()

PartDb

getDatabaseConnection()

BoundaryBase

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

getDatabaseConnection()

BoundaryBase

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

BoundaryBase

PartDb

populate()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

BoundaryBase

addEntityToListFromResultSet()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

addEntityToListFromResultSet()

populate()

BoundaryBase

populate()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

BoundaryBase

BoundaryBase

PartDb

large number of very cohesive methods

shorter methods easier to test

method names become documentation

discover reusable assets that you didn’t know
were there

benefits of composed
method

test-driven
development

test-driven design2

creates consumption awareness

first consumer

think about how the rest of the world uses this
class

design benefits of tdd

cleaner metrics

forces mocking of dependent objects

naturally creates composed method

design benefits of tdd

CustomerCustomer

addOrder()

extroverted object

Order

Customer

addOrder(Order o)

Order

introverted object

extroverted objects introverted objects

“reach out” to create objects

ad hoc creation

cleaner dependencies

moves object construction to
a few simple places

static analysis

3

byte-code analysis:
findbugs

bad practice
violation of recommended & essential
coding practice

correctness
probable bug

dodgy
confusing, anomalous, written poorly

bug categories

source analysis & pmd

suboptimal code

possible bugs

dead code

overcomplicated expressions

pmd targets

empty try/catch blocks

unused local variables
parameters

private variables

wasteful string usage

running pmd on
hibernate (unused

ruleset)

cpd

good citizenship

4

getters & setters !=
encapsulation

“should I unit test my getters & setters?”

knee-jerk creating getters/setters voids
encapsulation

create atomic mutators for dependent fields

accessors/mutators

shouldn’t have to tdd them

only create getters & setters when you need
them for other methods

testing:

as easy upon use as upon creation

they will get code coverage automatically

the new strategy

never!

specific contract for how to create valid
objects

how often is a blank object valid?

push back on frameworks that require this

don’t provide default constructors for domain
objects

constructors

static methods

Math.sqrt(25)

Math.sqrt()

mixes responsibilities

singleton is bad because:

the object version of global variables

untestable

mixing static + state

singleton

testable!

1. create a pojo for the business behavior

simple

also testable

2. create a factory to create the pojo

avoiding singletons

the worst citizen in the
java world...

java.util.Calendar

yagni

you ain’t gonna need it5

increases software entropy

build the simplest thing that we need right now

don’t indulge in speculative development

leads to frameworks

only saves time if you can guarantee you
won’t have to change it later

discourages gold plating

a public plea to the java
community:

please stop building frameworks!

This is just
what they need!

a cautionary tale

building a simple framework

changeability

anticipatory
design

refactorable

rate of change

higherlower

corporate code smells

6. We have an Architect who reviews all code pre-
checkin and decides whether or not to allow it
into version control.

7. We can’t use any open source code because
our lawyers say we can’t.

8. We use WebSphere because...(I always stop
listening at this point)

10. We invented our own web/persistence/
messaging/caching framework because none of
the existing ones was good enough.

9. We bought the entire tool suite (even though
we only needed about 10% of it) because it was
cheaper than buying the individual tools.

1. There is a reason that WSAD isn’t called
WHAPPY.
2. The initial estimate must be within 15% of the
final cost, the post-analysis estimate must be
within 10%, and the post-design estimate must be
with 5%
3. We don’t have time to write unit tests (we’re
spending too much time debugging)

5. The only JavaDoc is the Eclipse message
explaining how to change your default JavaDoc
template.

4. We keep all of our business logic in stored
procedures...for performance reasons.

question authority6

angry monkeys &
christmas roasts

test names
testUpdateCacheAndVerifyThatItemExists() {

}

test_Update_cache_and_verify_that_item_exists() {

}

api’s

fluent interfaces

what stands in the way?

the javabean specification!

harms constructor as specification

forces you to create default constructors

creates bad citizens

can’t use beans for fluent interfaces

setXXX() methods return void

what’s bad about beans?

non-intuitive

pair programming
studies

after adjusting, pairs produced code 15%
more slowly than individuals...

pair programming
studies

...with 15% fewer defects

slap

7 single level of
abstraction principle

composed method => slap

keep all lines of code in a method at the same
level of abstraction

jumping abstraction layers makes code hard to
understand

even if it means single-line methods

refactor to slap

s l a p

polyglot

 	

	

 	

 	

 	

 	

 	

	

 	

 	

 	

 	

 	

 programming

8

leveraging existing
platforms with languages

targeted at specific
problems and
applications

why do this?

schedule pressure

massively parallel threading

use a functional language: jaskell, scala

jruby on rails, grails

looming problems/
opportunities

stop banging rocks together & get some
work done!

everyday coding

groovy, ruby

face it:

looming problems/
opportunities

groovy EBXL™

writing more declarative code via dsls

build fluent interfaces

looming problems/
opportunities

now, language != platform

doesn’t polyglot programming add complexity?

In the past, language == platform

complexity

J

every nuance

9

no longer true

reflection

“reflection is slow”

elegant solutions to problems

java’s back alleys

regular expressions &

learn the nuances of
java...

...then tell the other
people on your project

anti-objects

10

“The metaphor of objects can go too far by making
us try to create objects that are too much inspired
by the real world. “

“...an antiobject is a kind of object that appears to
essentially do the opposite of what we generally
think the object should be doing.”

collaborative diffusion

ThoughtWorks

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

questions?

please fill out the session evaluations
slides & samples available at nealford.com

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

An Initial Investigation of Test Driven Development in Industry -
Laurie Williams, Boby George
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

AntiPatterns Catalog
http://c2.com/cgi/wiki?AntiPatternsCatalog

The legend of the leaning tower
http://physicsworld.com/cws/article/print/16806

findbugs
http://findbugs.sourceforge.net/

pmd/cpd
http://pmd.sourceforge.net/

resources

resources
Smalltalk Best Practice Patterns Kent Beck
Prentice Hall PTR (October 13, 1996)
ISBN-10: 013476904X

Polyglot Programming
http://memeagora.blogspot.com/2006/12/polyglot-programming.html

Optical Illusions
http://en.wikipedia.org/wiki/Optical_illusion

Collaborative Diffusion: Programming
Anti-objects - A Repenning
http://www.cs.colorado.edu/~ralex/papers/PDF/OOPSLA06antiobjects.pdf

resources

http://www.cs.utah.edu/~lwilliam/Papers/
ieeeSoftware.PDF

http://collaboration.csc.ncsu.edu/laurie/Papers/
XPSardinia.PDF

http://www.xprogramming.com/Practices/PracPairs.html

http://c2.com/cgi/wiki?PairProgramming

pair programming

resources

ThoughtWorks

© 2008, Neal Ford

Published by O’Reilly Media

The Productive Programmer

Photos by Candy Ford

ISBN: 978-0-596-51978-0

